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It is now more than 40 years since quantum mechanics 
first provided a complete underlying theory for chem- 
istry and promised to make it a truly mathematical 
science. Since that time, fulfillment of this promise has 
often been delayed by mathematical difficulties, and 
successful quantitative applications of theoretical 
methods have usually been limited to diatomics and 
other small molecules. Nevertheless, there has been 
progress and, during the last few years, it has become 
possible to use a number of fairly sophisticated molec- 
ular orbital methods to study the electronic structure 
of moderately large molecules. The field is an active 
one, with many participating research groups, and it 
seems likely that quantitative theories of electronic 
structure will play an increasing role in many branches 
of chemistry in the near future. The aim of this 
Account is to give a partial survey of some of the 
methods that have been developed in our laboratory, 
together with some illustrations of their application. 
Most of our work has been concerned with organic mole- 
cules, where there are only a small number of electrons 
per atom, but the principles are, of course, more general. 

One of the main objectives of a theoretical chemist 
should be to provide a critical quantitative background 
for simple qualitative hypotheses about electronic struc- 
ture. In  order to be useful as an independent study, 
a quantum mechanical theory must be formulated in 
an unbiased manner, so that no preconceived ideas 
derived from conventional qualitative discussions are 
implicitly built in. Molecular orbital theories satisfy 
this type of condition insofar as each electron is treated 
as being free to move in a path covering the entire 
molecular framework. 

A further requirement for a useful theory is that  the 
approximate wave functions used must be amenable to 
detailed interpretation and comparison among related 
molecules. For example, it  is helpful if the calculated 
electron charge distribution can be easily and realistic- 
ally divided into contributions of individual atoms which 
may then be compared with qualitative discussions. 

Another long-range objective is the development of 
quantitative methods to a point a t  which they can be 
useful in predicting the geometry and energies of species 
which are not amenable to direct experimental study. 
In  approaching this objective, we should recognize that 
there is little prospect of calculating total energies with 
high absolute accuracy for large molecules. A more 
modest, but realistic, approach is to adopt several 
clearly defined levels of approximation which do not 
represent the ultimate possible for small molecules but 
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which are simple enough to be widely applied. Each 
such method is then really a model system implying an 
entire chemistry of its own. Each can then be tested 
against real chemistry where experimental data are 
available and, if there is consistent success, some con- 
fidence is acquired in its predictive power. Much re- 
cent research has proceeded in this way, both with semi- 
empirical theories involving parametrization with some 
experimental data and with ab initio calculations where 
one particular method of calculation has been used for a 
range of different molecules and configurations. We 
have been concerned with the development of both 
types of theories a t  a level simple enough for widespread 
application to organic molecules. 

General Molecular Orbital Theory 
Most molecular orbital theories assign electrons in 

pairs to orbitals +$ which are written as linear combina- 
tions of a set of basis functions 4t (eq 1). The 4,, are 

+.I = CC&Jt (1) 
t 

normally centered on the atoms, so expansion 1 is often 
described as the linear combination of atomic orbital 
(LCAO) approximation. 

It is clear that, as a general rule, more accurate molec- 
ular orbitals can be obtained from large basis sets 4,, 
which permit increased flexibility in the representation. 
However, this increases the complexity of the calcula- 
tions and frequently limits applications to small mole- 
cules. As a general rule, molecular orbitals are simplest 
to apply and interpret if the basis set is minimal, that  
is, consists only of the least number of atomic orbitals 
(of appropriate symmetry) for the atomic ground state. 
Minimal basis functions for atoms to neon are listed in 
Table I. If a larger number of 4 functions are used, 
the basis set is usually described as extended. 

Once the molecular orbitals are determined, the 
charge density can be analyzed in terms of the basis 
functions 4,,. One major aim of such an analysis is to 
divide the total charge into parts associated with each 
such function. If there are two electrons per molecular 
orbital, the total charge density is 

i Y Y  

Table I 
Minimal Basis Functions 

Atoms Functions 

H, He Is 
Li, Be Is, 2s 
B, C, N, 0, F, Ne Is, 2% 2PZl 2PYl 2P8 
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where 
occ 

p,, = 2cc,ic, (3 ) 
z 

P,, is the density matrix and contains the detailed in- 
formation about charge distribution that is implicit in 
the molecular orbital wave function. The diagonal ele- 
ment P,, is the coefficient of the distribution +p2 and is a 
measure of an electron population for this orbital. The 
off -diagonal elements P,, are overlap populations, re- 
lated to the charge density associated with the overlap 
functions +,+,,. Since this distribution is in the bond- 
ing region between +, and +,,, the P,, elements are some- 
times described as bond orders. 

A full or gross population associated with an atomic 
orbital was introduced by Rlulliken’ as eq 4, where S,, 

(4) 

is the overlap intergral (eq 5 ) .  The gross populations 

S,, = s+,+, d7 ( 5 )  
q, add up to the total number of electrons in the mole- 
cule and are convenient measures of detailed charge 
distribution. 

The general problem of deriving the LCAO coefficients 
c,, by the variational method was solved by Roothaan2 
who derived eq 6, where the e, are one-electron energies 

m,,, - EiSpv)Cvz = 0 

F,, = H,, + CpAu[(,v/w - ‘ /2 (1*X/vg) I  

(6) 
V 

and F,, is the Fock matrix (eq 7). Here H,, is the 

(7) 
AU 

matrix of the one-electron Hamiltonian for motion in 
the field of bare nuclei and (pv /Xcr )  is the two-electron 
integral 8. Since the density matrix P,, depends on 

(C1vIhfl) = ss +,(1)+”(1) (1/r12)+x(2)+m dtldl2 (8) 
the molecular orbital coefficients c,,, eq 4 is not linear 
and has to be solved by an iterative procedure. It is 
frequently described as a self-consistent (LCAO- 
SCF) equation. 

The most difficult part of LCAO-SCF theory is 
usually the evaluation of the large number of two-elec- 
tron integrals (eq 9). Semiempirical methods usually 
treat these in a simplified manner and avoid the diffi- 
culties. A4b initio methods evaluate the integrals but 
have to use basis functions +, for which such integration 
is possible. 

The LCAO-SCF molecular orbital theory described 
here does, of course, use only a single determinant wave 
function and takes no account of the correlation be- 
tween the motions of electrons with antiparallel spins. 
To proceed beyond this step, i t  is necessary to use many 
determinants (configuration interaction). It is well 
known that such refinement is necessary to give an 

(1) R. S. Midliken, J. Chem. Phys . ,  23, 1833, 1841, 2338, 2343 
(1955). 

(2) C. C. J. ]Loothaan, Rev. M o d .  Phys.,  23, 69 (1951). 

adequate description of total binding energies. How- 
ever, i t  is much more difficult to apply configuration 
interaction methods systematically to large molecules, 
so most research in the theory of the structure of organic 
molecules, including everything in this paper, is limited 
to the single-determinant molecular orbital theory. 
It seems wise to study this level of theory thoroughly 
as a first stage, finding how i t  will perform, before at- 
tempting a fuller treatment. 

Semiempirical Methods 
The various semiempirical methods which have been 

applied to organic molecules start with the LCAO-SCF 
equations (6) and simplify them in various ways, in- 
troducing semiempirical parameters in the process. 

The simplest general semiempirical methods are the 
extended Huckel theories which are developments of the 
original T-electron MO theory due to H u ~ k e l . ~  These 
theories suppose that the Fock matrix elements for 
valence orbitals can be approximately treated as in- 
dependent of the electron distribution. Equation 6 
then becomes linear and is easily solved. A common 
form of the theory, due originally to 3Iulliken4 and 
extensively developed by H ~ f f m a n n , ~  uses eq 9, where 

F,, = -I ,  

F,, = - ‘/z ( I ,  + IJKX,, (9) 

I ,  is an orbital ionization potential (measuring rela- 
tive electron-attracting powers of orbitals) and K is a 
constant. 

The principal limitation of extended Huckel theory 
is its failure to allow for the dependence of the electron- 
attracting power of an atomic orbital on the number of 
electrons already on the same and surrounding atoms. 
It is likely to be most successful in obtaining molecular 
orbitals for nonpolar molecules where the local net 
charge on an atom is close to zero. The same approxi- 
mations also lead to the omission of interactions between 
polar and ionic groups unless the theory is appropriately 
modified. 

The simplest semiempirical treatment which attempts 
to take broad account of the main features of electron- 
electron interaction is the complete neglect of differ- 
ential overlap (CNDO) method.6 This approximate 
method (which treats only valence electrons explicitly) 
neglects the smaller two-electron integrals (eq 8) which 
involve the overlap between different + functions and 
treats the other integrals in a simplified manner. With 
some further approximations, the matrix elements for 
the Fock Hamiltonian become eq 10. In  these equa- 
tions, - l / z ( I ,  + A,) is the Mulliken electronegativity’ 
of the orbital +,, obtained as the average of the ioniza- 
tion potential and electron affinity. Z A  is the nuclear 
charge on atom A, so that q A  - ZA is the net (negative) 

(3) E. Huckel, 2. Physik, 70, 204 (1931). 
(4) R. S. Mulliken, J. Chem. Phys., 46, 497, 675 (1949). 
(5) R. Hoffmann, ibid. ,  39, 1397 (1963). 
(6) J. A. Pople, D. P. Santry, and G. A. Segal, ibid. ,  43, 5129 

(1965). 
(7) R. 5. Mulliken, ibid. ,  2, 782 (1934). 
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(4, on atom A) (loa) 

FMV = P'ABS,~ - '/ZP,~YAB 
(4, on atom A, 4" on atom B) (lob) 

charge for that  atom. TAB is a spherically averaged 
interaction between an electron on A and one on B. In  
the expression for F,,, P'AB is a semiempirical bonding 
parameter which was chosen initially by calibration with 
ab initio calculations on diatomics. 

The molecular orbital equations a t  the CNDO level 
are no longer linear, and they have to be solved by 
iterative methods. Application is consequently more 
time consuming, but the method is still sufficiently 
simple for application to quite large molecules with up 
to -100 minimal basis functions. 

It is clear from eq 10 that the CNDO method takes 
some account of the influence of charge distribution on 
the electron-attracting power of an atomic orbital. 
The second term gives the effect of other electrons on 
the same atom and the third term allows for stabiliza- 
tion or destabilization due to net charges on neighbor- 
ing atoms. However, i t  should be emphasized that 
other important effects are neglected or poorly taken 
into account. For example, the method does not in- 
clude interactions between dipoles due to directed lone 
pairs of electrons (since atomic distributions are treated 
as spherically averaged). It is also found that direct 
bonding energies are considerably overestimated (unless 
the DAB parameters are substantially reduced). 

One easily removed deficiency of the CNDO method 
is the neglect of one-center exchange integrals. These 
integrals measure the additional intraatomic stabiliza 
tion due to electrons with parallel spins occupying 
different atomic orbitals. This energy contribution 
leads to additional stabilization for atomic states of 
high multiplicity (Hund's rule) and is also important in 
understanding the electron spin distribution in many 
organic radicals. If contributions from these integrals 
are added to expressions 10, the semiempirical scheme 
is described as intermediate neglect of differential over- 
lap (INDO) ,8 For most closed-shell diamagnetic 
molecules, the CNDO and INDO methods give very 
similar results. The INDO method, however, gives a 
much superior description of the electron spin density 
in radicals. 

Ab Initio Methods with Slater-Type Orbitals 
As indicated in the introduction, we shall consider ab 

initio molecular orbital treatments with two types of 
minimal basis sets. The first uses functions closely 
related to Slater-type (exponential) orbitals (STO, 
eq ll)Q and similar forms for the other 2p orbitals. 
The parameters are scale factors which determine the 

(8) J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J .  Chem. Phys., 

(9) J. C. Slater, Phys. Rev., 36, 57 (1930). 
47, 2026 (1967). 

4zPz = ( ~ . 2 5 / ~ )  exp ( - ~ 2 r )  (11) 

size of the orbital. They may either be chosen as a 
standard set or may be optimized by the variational 
method. 

Although computational methods are available for 
the two-electron integrals (eq 8) with Slater orbitals, 
such calculations are time consuming, so we have re- 
placed the Slater-type functions with linear combina- 
tions of Gaussian functions which are chosen to give a 
least-squares fit. This follows work initiated by Foster 
and Boyslo and others.11e12 Thus we make the replace- 
ments 

1 

N 

k = l  

N 

k = l  

N 

k = l  

exp(-r) - C alk exp( - C Y M ~  

r exp(-r) -+ C aZsk exp(- mkr2) 

z exp(-r) - aZpkX exp(-aazkr2) (12) 

where the a and CY coefficients are found by methods due 
to Stewart.13J4 It should be noted that the expansions 
of the 2s and 2p functions share common CY values. 
This leads to a substantial gain in computational 
efficiency. The resulting set of basis functions, with N 
Gaussians per STO, is referred to as STO-NG. Evalua- 
tion of integrals involving sums of Gaussian functions is 
rapid,15 and the basis set can be used in quite large 
molecules. 

To test how well the STO-NG basis reproduces the 
results of a full STO treatment, we may consider the 
typical total energies listed in Table 11. The energies 

Table I1 
Total Energies (Hartrees) with Slater-Type Bases 

Molecule STO-3G STO-4G STO 

CH, - 39.715 -- 39.999 -40.114 
CZHB -78.280 -78.841 - 79.069 
"3 - 55.454 - 55.849 - 56.005 
HzCO -112.330 -113.136 - 113.450 

for STO-3G and STO-4G are seen to approach the STO 
values, but only slowly. However, if we consider 
atomization energies (total energy minus atom energies 
using the same basis set) as listed in Table 111, the 
convergence is seen to be very much more effective. 
Indeed, atomization energies with the STO-4G basis 
are almost identical with the STO numbers. This im- 
provement is probably due to the fact that the STO-NG 

(10) J. M. Foster and 5.  F.  Boys, Rev. Mod. Phys., 32, 303 (1960) I 
(11) C. M. Reeves and R. Fletcher, J .  Chem. Phys., 42, 4073 

(12) K. 0-Ohata, H. Taketa, and S. Huzinaga, J .  Phys. SOC. Jap. ,  

(13) R. F.  Stewart, J. Chem. Phys., 50, 2485 (1969). 
(14) W. J. Hehre, R.  F. Stewart, and J. A.  Pople, ibid. ,  51, 2657 

(15) S. F. Boys, Proc. Roy.  Soc., Ser. A ,  200, 542 (1950). 

(1965). 

21, 2306 (1966). 

(1969). 
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Table I11 
Atomization Energies (Hartrees) with Slater-Type Bases 

Molecule STO-3G STO-4G STO 

CH, 0.586 0.576 0.576 
CZH6 0.972 0.953 0.952 
"3 0.309 0,300 0.300 
HzCO 0.349 0.338 0.338 

functions deviate most from STO functions near the 
nucleus, so that the error introduced is similar in a 
molecule and its separated atoms. Figure 1 shows the 
STO-3G function for hydrogen which is very close to 
the exponential form in the outer region where there is 
overlap with orbitals on neighboring atoms. In  most 
subsequent work we have used the STO-3G basis to 
permit widespredd applications. 

The energies listed in Tables I1 and 111 mostly used 
To test how 

close these values are to the best molecular values, com- 
plete optimization studies of valence { were undertaken 
for a set of small organic molecules. Some typical 
results, which parallel other work by PitzerI6 and by 
Switkes, Stevens, and Lipscomb," are shown in Table 
IV. These results indicate that, for hydrogen and 

values from Slater's rules for free atoms. 

Table IV 
Optimum STO Exponents 

Molecule H C 0 

Free at'oms 1 .00  1.59 2 .23  
CHI 1.16 1.76 
CZH6 1.17 1.76 
C2H4 1.21 1.70 
CzHz 1.31 1.67 
Hz0 1.26 2 . 2 3  

carbon a t  least, the optimum Slater-type atomic orbitals 
in molecules are significantly smaller than in free atoms. 
This was known for hydrogen in the hydrogen molecule 
in the 1930's, but i t  is now clear that corresponding 
effects occur with some other atoms. 

Since i t  is frequently impractical to vary all f values 
for larger molecules, it  is useful to define a standard 
molecular set for valence orbitals. Such a set has been 
proposed and is listed in Table V together with the 

Table V 
Standard Molecular STO Exponents 

Standard Slater atom 
Atom exponent value 

H 1.24 1 ,oo  
C 1 .72  1.625 
N 1.95 1.95 
0 2 .25  2.275 
F 2 .55  2 . 6  

Slater values for free atoms. In  applications of the STO- 
3G basis, we have usually carried out a fairly full 

optimization in studies of charge density (which are 

(16) R. iM. Pitser, J. Chem. Phys., 46, 4871 (1967). 
(17) E. Switkes, R.  M. Stevens, and W. N. Lipscomb, ibid., 51, 

5229 (1969). 

r I 
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R -  
1 5  

01 

Figure 1. STO-3G orbital for hydrogen. 

sensitive to this feature), but for studies of equilibrium 
geometry only standard f values are used. 

Ab Initio Methods with Least-Energy 
Atomic Orbitals 

It is well known that, for nonhydrogenic atoms, 
Slater-type exponential functions are not particularly 
good approximations to the best (Hartree-Foclk) atomic 
orbitals. It is therefore useful to make a molecular 
orbital study using minimial basis sets which approach 
the Hartree-Fock limit for free atoms. We have, 
therefore, considered another set of atomic orbitals 
expanded as sums of normalized Gaussian orbitals (eq 
13). The d and Q parameters could again be chosen by 

N 

k = l  

N 

l"=l 

A' 

k = l  

41s' = C &, exp(-wXr2) 

42 ' = C exp( - cu2,r2) 

4zpz' = C dapkx exp(--aZ,~~) (13) 

least-squares fitting, this time with Hartree-Fock 
orbitals. However, this is found to lead to slow con- 
vergence, and a more satisfactory procedure is t o  vary 
the d and LY until the calculated energy of the atom is 
minimized. Such a set of functions may then be 
described as least-energy minimal atomic orbitals with 
N Gaussians (LERIAO-NG). Such a set of atomic 
orbitals has recently been determined for N = 3-6 and 
can be used in molecular calculations in a manner similar 
to the STO-NG sets.'* By virtue of the way in which 
they are derived, the atomic energies for LEMAO-NG 
functions are lower than for STO-NG and converge to 
the Hartree-Fock limit. This is illustrated in Figure 2 .  

Just as the STO orbitals change their optimum size 
in a molecular environment, the least-energy orbitals 
may also be resealed, so the actual functions used are 
given by eq 14, where { is now a scaling factor near 
unity. A number of molecules have been studied with 
these bases, all {-scale factors being optimized. l 9  
(18) R. Ditchfield, 'VV. J. Hehre, and J. A.  Pople, submitted for 

(19) W. J. Hehre, R. Ditchfield, and J. A.  Pople, submitted for 
publication. 

publication. 
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Table VI1 
Scaling Factors for Least-Energy 6G Bases 

Molecule H C 0 

CH4 1.33 1.03 
CZHG 1.30 1.05 
C2H4 1.33 1.05 
CzHz 1.41 1.06 
I320 1.51 0.98 

4- 

5- 
6- 
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6- 
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Figure 2.  STO and LEMAO atomic energies for carbon. 

4Jl.) = S8’z4p’(rr> (14) 

Some typical atomization energies by this method are 
listed in Table VI, which parallels Table 111. The 
limiting values cannot be obtained, but comparison 
with LENAO-6G indicates that convergence of theoret- 
ical atomization energies with increasing number of 
Gaussian functions is less rapid than for the correspond- 
ing Slater-type expansions. It is generally necessary to 
use the LEMAO-4G level to achieve reasonable con- 
vergence toward the limiting results. 

Table VI 
Atomization Energies (Hartrees) with Least-Energy Bases 
Molecule LEMAO-3G LEMAO-4G LEMAO-f3G 

CH, 0.504 0.495 0.491 
C2H5 0.843 0.814 0.803 
“3 0.261 0.259 0.258 
HzCO 0.302 0.277 0.269 

Some optimum valence scale factors are shown in 
Table VII. The most notable feature about these is 
that  the hydrogen functions for all of these molecules 
are contracted more than in the STO calculations. A 
rather wider range of scale factors is encountered, and 
the use of a standard set is rather less satisfactory than 
for STO. Nevertheless, such a choice can be made and 
is summarized in Table VIII. 

Application to Electron Distribution 
All of these molecular orbital methods can be used 

to study electron distribution in terms of the Mullilten 
gross populations and associated net atomic charges. It 
is found that the semiempirical INDO method and the 
ab initio STO-3G method (with optimization of valence 
p values) give fairly comparable distributions. Some 
typical results for STO-3G are given in Figures 3-€i20 

(20) W. J. Hehre and J. A.  Pople, J. Amer. Chem. Soc., 92, 2191 
(1970). 

Table VI11 
Standard Scale Factors for Least-Energy Bases 

Atom 

H 
C 
N 
0 
F 

Scale 
faotor 

1.35 
1.07 
1.00 
0.98 
0.98 

These may be used to comment on certain general types 
of charge displacement that are often discussed in 
qualitative terms. 

Paraffin molecules such as ethane have atomic charges 
close to zero, corresponding to a nearly nonpolar bond. 
Ethylene and acetylene show increasingly positive 
hydrogens corresponding to more C--H + character. 
The molecule propyne (Figures 4 and 5 )  is of some 
interest as it is the simplest hydrocarbon involving 
the interaction of a methyl group and an unsaturated 
system. Replacement of an acetylenic hydrogen by 
methyl leads to a substantial redistribution of charge 
within the triple bond. It is clear from Figure 4 that  
this is mainly a polarization leading to an increase of 
negative character of the p carbon rather than a transfer 
of charge from the methyl group. Figure 5 gives the 
corresponding gross populations of the r-type atomic 
orbitals and indicates that the polarization is mainly 
associated with n electrons. Figure 6 shows the STO- 
3G r densities in the phenyl ring of toluene and again 
show alternating polarization with only a small charge 
transfer. Thus the STO-3G densities support the 
qualitative concept of “hyperconjugation” involving n 
orbitals, but the interaction and consequent polarity are 
associated with reorganization within the unsaturated 
system rather than with transfer from the alkyl group. 

Figure 7 and Table IX illustrate certain features of 

Table IX 
Dipole MomentsZo 

Molecule STO-3G Exptl 

Water 1 .78 1 . 8 5  
Methanol 1 .51  1.69 
Methyl ether 1.18 1.30 

Ammonia 1.66 1.47 

Dimethylamine 1.19 1 .03  
Trimethylamine 0.95 0.61 

Methylamine 1.41 1 , 3 3  

the charge distribution associated with the interaction 
of methyl- and ether-type oxygen. It is apparent 
that, when attached to oxygen, a methyl group with- 
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Figure 3. STO-3G atom populations for simple hydrocarbons. 
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Figure 4. STO-3G atom populations for acetylene and propyne. 
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Figure 5 .  STO-3G r populations for acetylene and propyne. 
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STO-3G T populations for toluene. Figure 6 .  

draws electrons relative to hydrogen according to this 
treatment. This leads to a dipole moment in methyl 
ether which is substantially lower than water's, a trend 
which is fairly well reproduced by the theory. Accord- 
ing to the orbital breakdown of the charge distribution, 
this effect is partly due to back-donation of charge 
from the n-type lone pair of oxygen into the antibond- 
ing orbitals of the methyl group. This electron density 
shows up on the hydrogens not lying in the oxygen 
valence plane which become negative in methanol and 
methyl ether (Figure 9). 

Similar effects are found in amines where the decreas- 
ing dipole moments of the series NH3, CH8NH2, (CH& 
NH, and (CH&N is associated with decreasing elec- 
tron density on nitrogen and increasing electron density 
on the hydrogens trans to the nitrogen lone pair (Figure 
8 and Table IX).  It is interesting to note that the 
methylamines are stronger bases than ammonia. Thus 
it appears that, a t  least for this series, increasing base 
strength is not associated with increasing electron 
density on nitrogen. 

The gross populations using the least-energy minimal 
atomic orbital set differ markedly from the STO values. 
The results for methane, ammonia, and water (Figure 

H3C\ -279 

P = { ;:E:K / O  
-.on 
!*c +.I61 

\+.a04 
H 

Figure 7. STO-3G atom populations for water and methyl ether. 

H 
+.I62 

1.66 t h  

Me Me 

k '  \I -2S5 

0.95 t h  
0.61 e x  

-.015 doe 
H-f...H ,004 

H 

Figure 8. STO-3G atom populations for ammonia and tri- 
methylamine. 

Figure 9. Electron transfer in methyl ether. 

10) show much smaller electron densities on hydrogen 
and corresponding dipole moments which are consider- 
ably too large. It should be noted that this basis set 
uses hydrogen functions which are considerably more 
contracted (Table VII), and much of the density in the 
hydrogen region is probably assigned to the more 
diffuse functions on the heavy atom. This suggests 
that a population analysis using a LEMAO basis is 
less realistic than with the other methods, even 
though the calculated total energies are lower. 

Equilibrium Geometries 
If the standard scale factors listed in Tables V and 

VI11 are used, i t  becomes possible to carry out extensive 
geometrical searches for the lowest calculated energy 
and hence to obtain theoretical equilibrium geometries. 
A study of this sort using the INDO method has already 
been published,21 and the results may now be compared 
with corresponding studies by the two ab initio tech- 
niques discussed in this paper. 

Table X presents calculated equilibrium geometries 
for a series of small polyatomic molecules using the 
INDO, STO-3G, STO-4G, LEiafAO-4G, and LEMAO- 
5G procedures. These results are based on a variation 
of geometrical parameters which involve a number of 
constraints such as the requirement that  all bonds X H  
between a heavy atom X and hydrogens H have the 
same length. However, nonplanar configurations for 

(21) J. A .  Pople and M. S. Gordon, J .  Chem. Phys., 49, 4643 
(1968). 
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Molecule 

HzO 

"3 

CHn 
C2H2 

C2H4 

C2H6 

CHsF 

CH2O 

HCN 

Coordinates 

?OH 

OHOH 
TNH 

e H N H  

TCH 

r C H  

Tcc 

rco 
TCH 

eHCH 

rCH 

rcc 
eHCH 

YCH 

TCF 

OHCH 
TCH 

rco 
BHCH 

TCH 

TCN 

INDO 

1.03 

1.07 

1.12 
1.10 
1.20 
1.11 
1.31 

1.12 
1.46 

1.12 
1.35 

1.12 
1.25 

1.09 
1.18 

104.7 

106.4 

111.4 

106.6 

109.8 

115.0 

4 r given in ingstroms, e in degrees. 

/ H 

H. 

MOLECULAR ORBITAL METHODS 

Table X 
Equilibrium Geometriesa 

STO-3G 

0.990 
100.0 

1.033 
104.2 

I. 083 
1.065 
1.168 
1.079 
1.305 

1.085 
1.538 

.1.097 
1.384 

1,101 
1.217 

1.070 
1.153 

115.4 

108.2 

108.3 

114.5 

+ , 4 2 ! ~  

p + h  = 2 '68  D 

H / 
Figure 10. LEMAO-4G atom populations for methane, 
monia, and writer. 

am- 

CzH4 and CHzO and nonlinear configurations for CzHz 
and HCN were considered, and i t  does appear very likely 
that all three methods predict the correct symmetry for 
all of these molecules. 

The first point to note about Table X is that the 
STO-3G and STO-4G geometries are extremely close 
and may therefore be considered characteristic of the 
full STO basis set. The differences between STO-3G 
and STO-4G geometries are much smaller than the 
differences between either value and the experimental 
value, so little is gained by carrying out the calculations 
a t  the higher level of Gaussian representation. Similar 
conclusions follow from a comparison of the LERIIAO- 
4G and LEMAO-5G columns. 

To make an overall comparison with experiment, i t  is 
useful to examine mean absolute differences between 
theoretical and experimental geometrical parameters. 
These are listed in Table XI. From this rather limited 
sample, it would appear that the semiempirical INDO 
method is very successful for bond angles but less satis- 
factory for bond lengths. It is interesting to note that 

STO-4G 

0.987 
100.0 

1.029 
104.4 

1.079 
1.063 
1.168 
1.079 
1.307 

1.083 
1.535 

1.094 
1.381 

1.099 
1.217 

1.068 
1.154 

115.7 

108.2 

108.4 

114.8 

LEMAO-4G 

0.986 

1,010 

1.068 
1.059 
1.197 
1.067 
1.339 

1.068 
1.577 

1.081 
1.489 

1.087 
1.290 

1.072 
1.188 

108.6 

114.6 

116.3 

108.5 

112.2 

119.6 

LEMAO-BG 

0.987 

1.010 

1.068 
1.060 
1.197 
1.066 
1.341 

1.068 
1.581 

1.081 
1.494 

1.087 
1.293 

1.073 
1.189 

109.1 

115.0 

116.3 

108.5 

112.3 

119.9 

Table XI 
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Exptl 

104.5 

106.7 

0.957 

1.012 

1.085 
1.061 
1.203 
1.076 
1.330 

1.096 
1.531 

1.105 
1,385 

1,101 
1.203 

1.063 
1.154 

116.6 

107.8 

109.9 

116.5 

Mean Absolute Errors for Equilibrium Geometries 

INDO STO-3G LEMAO-4G 

Bond lengths, 0.035 0.011 0.028 
Bond angles, deg 1 . 4  2 . 0  3 . 1  

the Slater-type basis gives better values for both bond 
lengths and angles than the least-energy atomic orbital 
set, in spite of the fact that the latter give lower total 
energies. 

A number of detailed points about Table X are worthy 
of note. Clearly, the prediction of bond angles for 
water and ammonia is rather sensitive to the method 
used. The Slater-type basis gives values which are too 
small and the LEMA0 values are too large. Valence 
angles at  carbon, however, are well predicted by all 
methods. Thus, the fact that the HCH valence angle 
is less than the trigonal value of 120' in ethylene and 
formaldehyde is given by all methods, as is the lowering 
below the tetrahedral value of 109.5" in ethane. The 
Slater-type basis leads to bond lengths which are in 
fairly uniform agreement with experiment, but the 
LEMA0 values are too large for C-0 and C-F bonds. 

On the basis of the results presented in these two 
tables, it would appear that molecular orbital studies 
with the simple minimal STO-3G basis and standard 
exponents should be a valuable technique for predict- 
ing the geometrical details of molecular structure. The 
set of molecules chosen for comparison with experiment 
is small but fairly representative of organic systems. 
More extensive investigations are now under way which 
will include studies of species where the equilibrium 
geometry is not known experimentally. If the small 
errors shown in Table XI do hold more generally, theory 
a t  this level will become a powerful method of studying 
molecular geometry. 


